

Original Instructions Assembly Instructions

Positive Displacement Pumps FK/FL Series

Pump Type:

Pump No.:

Copyright

© Copyright 2010 Fristam Pumpen KG (GmbH & Co.)

All rights reserved. The contents, including graphic images and layout of this operating instructions manual are subject to copyright protection and to other laws for the protection of intellectual property. The publication and modification of the contents are not authorised. Moreover, you may not copy, publish and alter the contents therein for commercial purposes, or transmit the information to a third party.

The German version is the original version of the operating instructions manual. Other languages are translations of the original operating manual.

Table of Contents

1	Introduction	5
1.1	Foreword	5
1.2	Manufacturer	5
1.3	Scope of Supply	5
1.4	Pump Without Motor (Optional)	5
1.5	Scope of Documentation	5
1.6	Basic Safety Instructions	5
1.7	Display Conventions	5
2	Safety	6
2.1	Intended Use	6
2.2	Improper Use	6
2.3	Pump-Specific Safety Instructions	6
2.4	Warning and Instruction Labels	6
2.5	Noise Emissions	7
2.6	Disposal	7
3	Design and Function	7
3.1	Principles of Design	7
3.2	Models	8
3.3	Basic Versions	8
3.4	Pump Sizes	9
3.5	Accessories	9
3.6	Type Designation	9
4	Transportation	9
4.1	Safety Instructions	9
4.2	Moving With Industrial Truck	10
4.3	Moving With Crane	10
5	Storage	11
5.1	Pump Storage Conditions	11
5.2	Long-Term Pump Storage	11
5.3	Recommissioning	11
6	Installation	11
6.1	Safety Instructions	11
6.2	Installation Location	11

6.3	Reduction of Sound and Vibration	11
6.4	Pump Fixation	11
6.5	Installation of Pipes	12
6.6	Electrical Connection	12
6.7	Connection of Sealing or Quenching Liquid (Optional)	12
6.8	Cleaning	13
7	Operation	13
7.1	Safety Instructions	13
7.2	Commencement of Operation	13
7.3	Monitoring of Operation	14
7.4	Stopping of Operation	14
7.5	Pump Decommissioning	14
8	Cleaning in Place	14
8.1	CIP Process	14
8.2	SIP Process	14
9	Faults	15
9 9.1		
-	Faults	
-		15
9.1 10	Safety Instructions	15 15
9.1	Safety Instructions Maintenance Safety Instructions	15 15 15
9.1 10 10.1 10.2	Safety Instructions Maintenance Safety Instructions Replacement Parts	15 15 15
9.1 10 10.1	Safety Instructions Maintenance Safety Instructions	15 15 15 15
9.1 10 10.1 10.2	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching	15 15 15 15
9.1 10 10.1 10.2 10.3	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching Liquid (Optional)	15 15 15 15
9.1 10 10.1 10.2 10.3 10.4	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching Liquid (Optional) Oil Level Check	15 15 15 15 15
9.1 10 10.1 10.2 10.3 10.4 10.5	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching Liquid (Optional) Oil Level Check Oil Change	15 15 15 15 15 15
9.1 10 10.1 10.2 10.3 10.4 10.5 10.6	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching Liquid (Optional) Oil Level Check Oil Change Lubrication of Motor Bearings	15 15 15 15 15 15 15 16
9.1 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching Liquid (Optional) Oil Level Check Oil Change Lubrication of Motor Bearings Shaft Seal Replacement	15 15 15 15 15 15 15 16 16
9.1 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching Liquid (Optional) Oil Level Check Oil Change Lubrication of Motor Bearings Shaft Seal Replacement Pump Head Removal	15 15 15 15 15 16 16 16 16 18
9.1 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching Liquid (Optional) Oil Level Check Oil Change Lubrication of Motor Bearings Shaft Seal Replacement Pump Head Removal Pump Head Attachment	15 15 15 15 15 15 16 16 16 18 22
9.1 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching Liquid (Optional) Oil Level Check Oil Change Lubrication of Motor Bearings Shaft Seal Replacement Pump Head Removal Pump Head Attachment Shaft Bearing Replacement	15 15 15 15 15 16 16 16 16 18 22 22
9.1 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11	Safety Instructions Maintenance Safety Instructions Replacement Parts Inspection of Sealing and Quenching Liquid (Optional) Oil Level Check Oil Change Dil Change Shaft Seal Replacement Pump Head Removal Pump Head Attachment Shaft Bearing Replacement Coupling Replacement	15 15 15 15 15 15 16 16 16 16 18 22 22 23

11	Appendix 1 27
11.1	Specifications 27
11.2	Maintenance Intervals 28
11.3	Troubleshooting Table
11.4	Number Key 30
11.5	EC Declaration of Conformity 32
11.6	EG Declaration of Incorporation 32

12 Appendix 2 – Assembly Instructions (Optional)

	(Optional)	33
12.1	Safety Instructions	33
12.2	Scope	33
12.3	Rating Plate	33
12.4	Moving Without Motor	33
12.5	Installation Location	34
12.6	Pump Installation	34

1 Introduction

1.1 Foreword

This operator's manual describes all sizes, models, and versions of the FK-and FL-Positive Displacement Pumps.

Information on the model, size, version, and accessories applicable to your pump can be found on the rating plate on your pump and in the "Order-Related Documents" in the attached documents.

1.2 Manufacturer

FRISTAM Pumpen KG (GmbH & Co.)

Kurt-A.-Körber-Chaussee 55

21033 Hamburg

GERMANY

Tel.: +49-40-72556-0

Fax: +49-40-72556-166

E-mail: info@fristam.de

1.3 Scope of Supply

The package includes the following items:

- Pump with gear motor (= pump unit)
 - optional: without motor
- Fristam accessories (if applicable)
- Covers for pipe fittings
- Optional: assembly kit
- Documentation
- Check the shipment for completeness and damage. Immediately notify *Fristam* of any missing items or damage.

1.4 Pump Without Motor (Optional)

The pump can optionally be supplied without a motor. In this case, continue reading up to and including Chapter 3, "Design and Function", and then skip to Chapter 12, "Appendix 2 – Assembly Instructions (Optional)," page 33.

1.5 Scope of Documentation

The documentation includes the following items:

- This operator's manual
 - Appendix 1 with maintenance, lubrication, and tightening torque tables
 - Appendix 2 with assembly instructions
- Attached documents
 - Order-Related Documents

- Supplier Documentation (motor, coupling, etc.)
- Documentation on Fristam accessories (if applicable)
- Certificates (materials certificates, etc.), if applicable
- Declaration of Conformity or Declaration of Incorporation

1.6 Basic Safety Instructions

Please read this operator's manual completely before using the pump and keep it available at the pump installation location.

Heed the applicable national regulations of the owner's country and the company's work and safety regulations.

Danger of contamination: Heed legal and operational safety regulations when pumping dangerous media.

All work described in this operator's manual may only be performed by qualified experts with caution.

While the pump is running, do not remove safety disconnectors.

1.7 Display Conventions

List items are preceded by dashes:

- Part 1
- Part 2

Handling instructions that must be performed in a specified order are numbered:

- 1. Turn device on.
- 2. Turn device off.

Handling instructions that do not need to be performed in a specified order are preceded by triangular bullets:

- Action
- Action

1.7.1 Safety Instructions

A DANGER

A safety instruction with the signal word "Danger" indicates personal hazards causing death or serious injury.

A safety instruction with the signal word "Warning" indicates personal hazards that may lead to death or serious injury.

A CAUTION

A safety instruction with the signal word "Caution" indicates personal hazards that may lead to mild to moderate injuries.

NOTICE

A safety instruction with the signal word "Note" warns of the possibility of material damage.

2 Safety

2.1 Intended Use

The standard versions of the FK-and FL-Positive Displacement Pumps are designed for use in the food industry, the pharmaceutical and biotechnology industry, and CIP process technology.

The FK-and FL-Positive Displacement Pumps are designed for pumping media at version- and size-specific maximum temperatures and pressures. See *Chapter 11.1, "Specifications," page 27.*

The pump flow direction can be selected freely. The FK pump can generate a vacuum in the suction line.

Each pump is designed according to customer requirements. The seal materials have been selected for the respective medium.

The pump may only be used under the operating conditions specified in the order. See *Order-Related Documents*. For other operating conditions, please contact *Fristam*.

2.2 Improper Use

The standard versions of the FK-and FL-Positive Displacement Pumps may not be used in explosive atmospheres. Special explosion-proof versions are available for this.

Pumping of foreign objects with the medium can block and destroy the pump.

Pumping of media other than that specified can destroy the pump. The pumps and the seal materials (elastomers) have been selected for specific pumping media.

Standard pump units from *Fristam* are described in this operator's manual. If nonstandard items or extras are installed, the operator assumes the responsibility for operation. Modifications and changes to the pump are only permissible with the consent of *Fristam*.

2.3 Pump-Specific Safety Instructions

Impermissible Pressure Range

Personal injury and material damage from leakage or bursting of pump.

Maintain the pump pressure within the specified pressure range. See Chapter 11.1.2, "Maximum Discharge Pressures," page 27.

Impermissible Temperature Range

Personal injury and material damage from leakage or bursting of pump.

Maintain the pump temperature within the specified temperature range. See Chapter 11.1.3, "Maximum Medium Temperatures," page 27.

Cold Firefighting Water on Hot Pump

Material damage.

- When extinguishing a fire do not point the water jet at the pump.
- ► Let pumps cool down as slowly as possible.

Hot Pump Surface

Contact burns from touching the pump.

- Check the temperature before touching the pump.
- ► Only touch the pump if you are wearing suitable gloves.

Noise Emissions From Running Pump

Permanent hearing damage. The A-weighted sound pressure level of the pump can be greater than 80 dBA.

- Always wear ear protectors in the vicinity of the running pump.
- ► The local noise exposure regulations must be complied with.

2.4 Warning and Instruction Labels

- ▶ Do not alter or remove the labels on the pump.
- Immediately replace damaged or lost labels with ones that are true to the originals.

2.4.1 Hot Surface

Fig. 1 Safety label: "Hot Surface"

This label indicates that parts can become hot during operation or, if applicable, that hot media is being pumped. Check the temperature before touching the pump. Only touch the pump if you are wearing suitable gloves.

2.4.2 No Dry Running

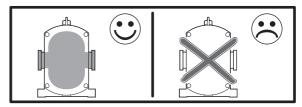
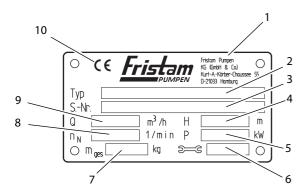



Fig. 2 Safety label: "No Dry Running"

This label indicates that the pump cannot be run dry. There must always be medium in the suction line and the pump when the pump is started. Otherwise, the pump will be damaged.

2.4.3 Rating Plate

Fig. 3 Pump unit rating plate

1	Manufacturer
2	Type: pump series, pump size, model, version
3	SN: serial number of the pump
4	H: discharge head [m]
5	P: motor output [kW]
6	Year of manufacture
7	Mttl: mass (total) [kg]
8	n _R : rated gear speed [1/min]
9	Q: flow rate [m ³ /h]
10	CE mark

2.5 Noise Emissions

Noise Generated by Running Pump

Hearing damage.

 Wear ear protectors when using pumps with specified sound pressure levels of greater than 80 dBA.

2.6 Disposal

2.6.1 Disposal of Transportation Package

► Recycle the transportation package.

2.6.2 Disposal of Grease

 Dispose of grease and objects saturated with grease in an environmentally friendly manner in accordance with applicable regulations.

2.6.3 Disposal of Lubricating Oil

 Dispose of oil and objects saturated with oil in an environmentally friendly manner in accordance with applicable regulations.

2.6.4 Disposal of Pump

- 1. Dispose of dangerous or toxic residue in an environmentally friendly manner in accordance with applicable regulations.
- 2. Carefully clean the pump.
- 3. Dismantle the pump into its constituent parts.
- 4. Dispose of the pump parts in an environmentally friendly manner in accordance with applicable regulations.

2.6.5 Disposal of Electrical and Electronic Scrap

► Dispose of electrical and electronic scrap in accordance with applicable directives.

3 Design and Function

3.1 Principles of Design

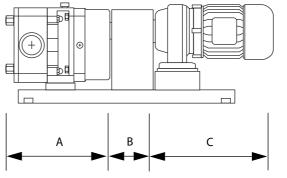
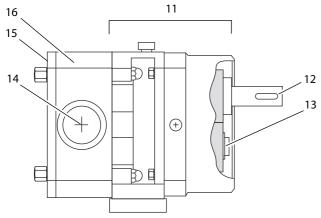



Fig. 4 Principles of design illustrated using the FL positive displacement pump

А	Pump with synchromesh gears
В	Coupling
С	Gear motor

Pump With Synchromesh Gears (A) 3.1.1

Principles of design illustrated using the FL positive displacement pump Fig. 5

11	Gearbox
12	Drive shaft
13	Synchronizing shaft
14	Pipe fittings
15	Pump cover
16	Pump casing

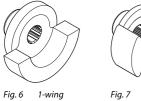
3.1.2 Coupling (B)

The coupling connects the gear motor shaft to the drive shaft (12) of the pump. The driving torgue is transmitted from the gear motor to the pump via the coupling.

Model FKF: The coupling is omitted.

3.1.3 Gear Motor (C)

The gear motor is an electric motor with either fixed or variable speed. It is screwed to the base frame or the foundation.


3.2 Models

The model and version are indicated on the rating plate. See Chapter 2.4.3, "Rating Plate," page 7.

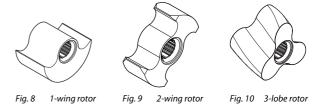
The FK and the FL/FL2 differ in terms of the pumping element shape. The FK, FL, and FL2 are described in the following sections.

Model FK 3.2.1

The FK positive displacement pumps are circumferential piston pumps. They are equipped with pumping elements in the following forms:

2-wing rotor

FK Versions


The respective version is indicated on the rating plate; see Chapter 3.6, "Type Designation," page 9.

- High-pressure version with cover bushing
- Compact FKF

This version has no coupling. The pump is flange-mounted on the gear motor.

Model FL 3.2.2

FL positive displacement pumps are rotary piston pumps. They are equipped with pumping elements in the following forms:

The principles of design are the same for the FL and the FL2. They differ in their shaft seals.

FL and FL2 Versions

Short or long rotors

This version enables further adaptation to the output requirements of the pump.

3.3 **Basic Versions**

For all models, the following versions are available:

- Single or double shaft seal

Two seal types are available for use: single and double shaft seals.

With the double shaft seal, there are two additional connections for the sealing liquid on the pump casing. These connections are not shown in the figures in this operator's manual.

High-temperature rotors

High-temperature rotors are special rotors that can be used in FK-and FL-Positive Displacement Pumps to pump media at elevated temperatures. The clearance is larger in hightemperature rotors. See Table 10, "Axial clearances," page 24.

- Horizontal or vertical pump connection
- Heating jacket

The pump cover and the casing can each be equipped with a heating jacket.

Relief valve

The relief valve is a safety valve located on the pump cover. If a relief valve is supplied, the corresponding operating instructions can be found in the attached documents.

Rectangular inlet

The rectangular inlet is an enlarged opening of the suction port.

3.4 Pump Sizes

Model FL	Model FL2	Model FK
FL 55	FL2 50	FK 25
FL 75	FL2 55	FK 25/30
FL 100	FL2 58	FK 40
FL 130	FL2 75	FK 40/45
	FL2 100	FK 48
	FL2 130	

Table 1 Pump sizes

3.5 Accessories

The FK-and FL-Positive Displacement Pumps can be equipped with the following accessories, among others:

Enclosure

Stainless steel enclosure for the gear motor. The enclosure is fastened to the base frame.

Spherical cap bearings

Depending on the design, the spherical cap bearings are attached to the base frame or the gear motor for setup of the pump.

Other accessories are available. If you have any questions, please contact *Fristam*.

3.6 Type Designation

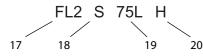


Fig. 11 Type designation example

17	Pump type
18	Supplementary character 1
19	Pump size
20	Supplementary character 2

(17) Pump Type

- FK Circumferential piston pump, self-priming
- FL Rotary piston pump
- FL2 Rotary piston pump

(18) Supplementary Character 1

- F For FK 25-40/45: with flange, without coupling
- FN For FK 25-40/45: drive with coupling

- N For FK 48: drive with coupling
- H For FK: high-pressure versions with cover bushings
- S Vertical connections
- V For FK: double seal
- Ü Relief valve

(19) Pump Size

- XX Pump size number
- S For FL and FL2: short model
- L For FL and FL2: long model
- L3 for FL and FL2: long model with 3-lobe-rotor

(20) Supplementary Character 2

- H Pump casing with heating jacket
- h Pump cover with heating jacket
- R Rectangular inlet

Note: If the (optional) pump without motor is supplied, please first read Chapter 12, "Appendix 2 – Assembly Instructions (Optional)" on page 33.

4 Transportation

Transportation may only be performed by trained personnel. The pump can be moved using an industrial truck or a crane.

4.1 Safety Instructions

Falling or Unsecured Parts

Severe crush injuries.

 Always wear gloves when performing transportation-related work.

Incorrect Positioning of Pump for Transportation

Leakage of caustic, toxic, or contaminating liquids. Personal injury and material damage from contamination.

► Always move the pump in the installation condition.

Open, Unsealed Pipe Fittings

Material damage from contamination, impact, or moisture in the pump.

 Remove the pipe fitting covers just prior to connection to the pipes.

4.2 Moving With Industrial Truck

A WARNING

Unsecured Parts

Serious injuries, pinching of extremities, material damage.

 Before moving the pump secure it to prevent it from tipping over. Secure the pump to the pallet with tie-down straps, or screw the pump to the pallet.

Information on pump weight can be found on the pump's rating plate as well as in the *Order-Related Documents* in the attached documents.

Preparation

Ensure that the pump is adequately secured to the pallet, for example, with straps; see Fig. 12, "Moving with industrial truck," page 10.

Procedure

- 1. Pick up the pallet with the forks on the industrial truck.
- 2. Carefully move the pallet to the designated location and set down.

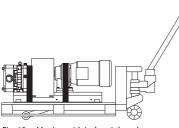


Fig. 12 Moving with industrial truck

4.3 Moving With Crane

A WARNING

Falling Parts

Death from crushing, severe pinching of extremities, material damage.

- ➤ Only use suitable means of conveyance and hoists. Information on the pump weight can be found on the pump's rating plate as well as in the Order-Related Documents in the attached documents.
- Do not lift the pump unit at the eyebolt on the motor or the pump to move because these eyebolts are not designed for the total weight of the pump unit.
- Do not leave the pump in a raised position for longer than necessary.
- ► Ensure that the area below the pump is clear of people.

A WARNING

Swinging Parts

Crushing and serious injuries.

- ▶ Start and stop the crane with pump smoothly.
- ► Ensure that the danger zone of the pump is clear of people.

Auxiliary Equipment

Hoists: round slings tested in accordance with DIN EN 1492-1 and 1492-2

Preparation

▶ Remove load-securing devices.

Procedure

- 1. **Warning:** Round sling damage and tearing. Death from crushing, severe pinching, material damage.
 - Do not lay the round sling over any sharp edges or corners.

Wrap the round sling around the gear motor; see Fig. 13, "Moving with round sling illustrated using the FL 100," page 10.

- 2. Wrap the other end of the round sling around the pump casing; see *Fig. 13, "Moving with round sling illustrated using the FL 100," page 10.*
- 3. For double shaft seal:

Note: Round sling compresses sealing water tubes. Material damage to double shaft seal.

- ▶ Do not lay the round sling on the sealing water tubes.
- 4. Guide both loops to the crane hook, rotate, and hook over the hook to ensure that the belt will not slip on the hook.
- 5. Position the center of gravity to ensure that the pump is lifted horizontally.
- 6. Lift the pump.

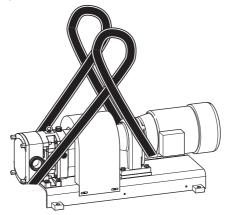


Fig. 13 Moving with round sling illustrated using the FL 100

5 Storage

5.1 Pump Storage Conditions

Store the pump as follows:

- Dry, in low humidity
- Protected against frost and heat, optimally at a temperature of 20°C to 25°C
- Ventilated
- Dust-free
- All movable pump parts must be rotated every three months.

5.2 Long-Term Pump Storage

For a storage time of longer than six months, heed the following:

The shaft seals must be completely removed and stored separately before long-term storage of the pump.

See Chapter 10.8, "Pump Head Removal," page 16 and Chapter 5.2.1, "Storage of Elastomers," page 11.

5.2.1 Storage of Elastomers

Store the elastomers as follows:

- Storage temperature between +5°C and +20°C
- Relative air humidity below 70%
- No direct sunlight
- Deformation-free storage

5.3 Recommissioning

 After long-term storage and before commissioning, check seals, bearings, and oil level.

6 Installation

6.1 Safety Instructions

Falling or Unsecured Parts

Severe crush injuries.

 Always wear gloves when performing installation-related work.

Incomplete, Unstable Installation

Severe crush injuries, material damage.

► Tighten screws to the specified tightening torque; see Chapter 11.1.1, "Tightening Torques," page 27.

 Use a torque wrench or an impact driver with adjustable torque.

During Adjustment of Spherical Cap Feet: Swinging

Material damage to system and pump.

Use spherical cap base plates.

6.2 Installation Location

For standard pumps, the installation location must meet the following requirements:

- Nonexplosive atmosphere
- Dust-free environment
- Ambient temperature: -20°C to +40°C
- Moisture and salt contents in ambient air: The values are given in the "Motor Operator's Manual;" please see the attached documents.
- Foundation sized adequately for the pump weight
- Horizontal and level installation surface, adequate installation surface strength for pump mass
- Installation clearances from the "Motor Supplier Documentation"
- Adequate clearance for maintenance work
- Adequate air supply for motor cooling

6.3 Reduction of Sound and Vibration

6.3.1 Primary Measures

- Operate the pump in the optimum working range.
 - ► Operate the pump without cavitation (see *Chapter 6.5,* "Installation of Pipes," page 12).
- Decouple the suction and discharge lines from vibrations.
 - ► Support lines.
 - ► Align lines.
 - ► Install vibration dampers.

6.3.2 Secondary Measures

- ► Take structural measures such as the following:
 - Acoustic paneling
 - Enclosure in housing

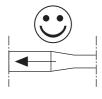
6.4 Pump Fixation

6.4.1 Pump With Base Frame

• Screw the pump on the base frame to the foundation.

6.4.2 Pump With Base Frame on Spherical Cap Bearings (Optional)

• Set up the pump on the spherical cap bearings and align.


6.4.3 Carriage (Optional)

- 1. Set up the pump at the installation location. Lock the locks on the rollers (if present) or secure the carriage with chocks.
- 2. Ground the carriage to dissipate electrostatic charge.
- 3. Position hose line to ensure that it cannot be damaged.

6.5 Installation of Pipes

Lay and connect pipes as follows:

 Keep the pipe resistance as low as possible: Avoid unnecessary installation of valves, elbows, and abrupt pipe transitions.

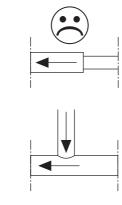


Fig. 14 Pipe transitions

- Design pipe cross section so that no unnecessary pressure losses or cavitation occurs in the suction and inlet areas.
- ▶ Install a shut-off valve in the discharge line.
- Design the suction lines to be as short as possible.
- Install suction lines horizontally or continuously falling in direction of the pump unit. Prevent air locks and dips in the piping.

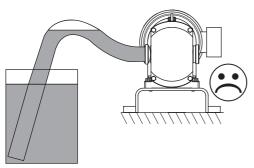


Fig. 15 Air pocket in pipe

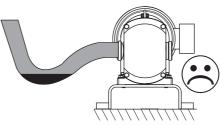


Fig. 16 Dip in pipe

- Lay and connect the pipes to ensure that no stresses are applied to the pump.
- ► Secure pipes to ceilings, walls, or floor using pipe clamps.
- Align pipes flush with pump connections using a bracket.

6.6 Electrical Connection

A WARNING

Electrostatic Charge Buildup

Electric shock.

Ground the pipes and the pump.

Electrical connection may only be performed by a qualified electrician.

Procedure

- 1. Heed the connection values on the motor's rating plate. The specified voltage must not be exceeded.
- 2. Only connect the motor to fuse-protected circuits to prevent excessive current consumption.
- 3. Connect the motor according to the circuit diagram in the terminal box of the motor.
- 4. Protect cable feedthroughs against penetration by moisture.
- 5. Turn on the motor for 2 to 3 seconds. Check the direction of rotation of the motor fan wheel.
- 6. Reverse the polarity if the direction of rotation is incorrect.

6.7 Connection of Sealing or Quenching Liquid (Optional)

For versions with double shaft seals, the shaft seal chamber must be flushed with sealing or quenching liquid.

• Use a suitable medium as a sealing or quenching liquid.

6.7.1 Installation of Pipes

- 1. Install and seal the supplied flushing tubes.
- 2. Install the inlet line on the **bottom** of the shaft seal.
- 3. Install the return line on the top of the shaft seal.

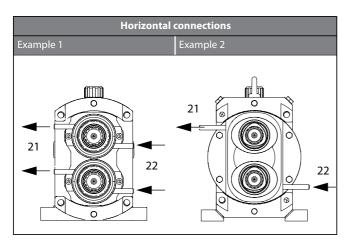


Table 2 Horizontal connections

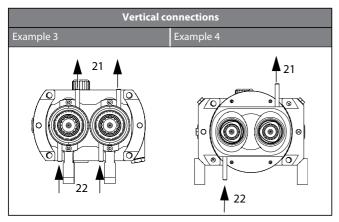


Table 3 Vertical connections

21	Return line
22	Inlet

- 4. Install the following fittings in the pipes:
 - Throttle valve in inlet line
 - Return line with flowmeter (pressure gauge)

6.8 Cleaning

Only use cleaning agents that comply with the hygiene guidelines for the respective pumping medium.

- 1. Before sealing the pump ensure that there are no foreign objects inside the pump or pipes.
- 2. Seal the pump.
- 3. Connect the pipes.
- 4. Thoroughly clean the pump and the pipe system before initial use.

7 Operation

7.1 Safety Instructions

Closed Valve in Discharge Line

Serious personal injury and material damage from bursting of system due to excessive pressure buildup.

- Before turning on and during operation of the system, ensure that all valves in the discharge line are open.
- ► Install bypass for pressure limitation.

Closed Valve in Suction Line

Damage to shaft seal by dry running of pump.

- Before turning on and during operation of the system, ensure that all valves in the suction line are open.
- Regulate the pump output only by means of the dischargeside valve.

No Medium in Pump

Dry running of pump. Damage to shaft seal.

 Ensure that there is always medium in the pump before and during operation.

7.2 Commencement of Operation

NOTICE

For double shaft seal: Stoppage of Sealing Liquid

Damage to shaft seal.

Ensure that during operation:

 The sealing liquid flows with the necessary pressure through the double shaft seal.

The prescribed sealing fluid pressure is specified in the "Order-related documents" in the sectional drawing of the shaft seal. The "Order-related documents" are included in this operating manual.

- Negative pressure in the seal chamber is not allowed.

If no pressure is noted in the "Sectional drawing of the shaft seal", the following applies:

- A max. pressure of 0.2 bar is allowed for seals to which sealing fluid is applied without pressure or which are flushed.
- The temperature of the sealing liquid T is maintained at < 70 °C.</p>
- 1. Open the valve in the suction line.
- 2. Open the valve in the discharge line.

- 3. Fill the pump and the suction line up to the upper edge of the pump with pumping medium. Allow any air pockets that are present to escape.
- 4. Only for pumps with sealing or quenching liquid:

Check the required sealing pressure. For the maximum sealing pressure, see the specifications on the *Sectional Drawing* in the attached documents.

5. Turn on the motor.

7.3 Monitoring of Operation

7.3.1 Safety Instructions

Foreign Objects in Pumping Medium

Blocking of rotors and shearing off of shafts.

- Rule out the possibility of foreign objects in the pumping medium.
- ► Install a current limiter to protect the gear motor.

Sudden Closing of Valves in Discharge Line

Damage to pumping medium by water hammers in the pump.

 During operation do not close the valve in the discharge line abruptly or for a long period of time.

Rapid Cooling of Pump

Tension cracks in pump.

► Do not rapidly cool the pump.

Cavitation and Dry Running of Pump

Damage to shaft seal.

► Ensure that suction-side valves are open during operation.

7.4 Stopping of Operation

- 1. Turn off the motor.
- 2. Close the valve in the suction line to prevent dry running of the pump.
- 3. Close the valve in the discharge line.

7.5 Pump Decommissioning

- 1. Turn off the motor.
- 2. Close the valve in the suction line.
- 3. Close the valve in the discharge line.
- 4. De-energize the pump.
- 5. Empty the pump.
- 6. Clean the pump as described in *Chapter 6.8, "Cleaning,"* page 13.
- 7. Dry the pump.

- 8. Protect the interior of the pump from moisture.
- 9. Seal the pipe connections with caps to prevent penetration of dirt and foreign objects.
- 10. For additional steps, please see Chapter 5, "Storage," page 11.

8 Cleaning in Place

8.1 CIP Process

The FK-and FL-Positive Displacement Pumps are suitable for the CIP (Cleaning In Place) process. The following guidelines apply to the CIP process:

Example of a Cleaning Cycle

- 1. Perform preliminary flush with water.
- 2. Perform caustic flush with lye (NaOH; see *Table 4 CIP clean-ing*).
- 3. Perform intermediate flush with water.
- 4. Perform acid flush with nitric acid (HNO3; see *Table 4 CIP cleaning*).
- 5. Flush with water.

The pump's differential pressure should be 2–3 bar so that adequate flow rates are reached in the pump.

Medium	Process Temperature [°C]
NaOH (approx. 1% to 2%)	80 to 85
HNO3 (approx. 1%)	60 to 65

Table 4 CIP cleaning

If values deviate from these specifications, please contact *Fristam*.

8.2 SIP Process

NOTICE

Dry Running of Pump With Vapor

Damage to shaft seal.

► If vapor is flowing through the pipes, ensure that the pump is off.

The FK-and FL-Positive Displacement Pumps can only be used with the SIP (Sterilization In Place) process with the prior approval of *Fristam*.

Suitability depends on the selected elastomers.

The process temperature may not exceed 145°C.

With ATEX operation, temperatures might deviate, see supplementary ATEX manual, "Operating temperature limits".

9 Faults

For information on faults, possible causes, and remedies, please see *Chapter 11.3*, "*Troubleshooting Table*," *page 28*.

9.1 Safety Instructions

Hot Surfaces

Contact burns from touching the pump. Pumping of hot media can cause the pump to become very hot.

- ► Let the pump cool down completely before working on it.
- Only touch the pump if you are wearing heat-resistant gloves.

10 Maintenance

For information on maintenance intervals, please see *Chapter 11.2, "Maintenance Intervals," page 28.*

10.1 Safety Instructions

Rotating Parts

Personal injury and material damage.

 Always turn off the pump motor and prevent it from being able to be turned on accidentally before working on the pump.

Falling or Unsecured Parts

Severe crush injuries.

 Always wear gloves when performing maintenance-related work.

Uncontrolled Outflow of Liquids

Personal injury and material damage from acid burns, poisoning, and contamination.

Before performing maintenance or cleaning work on the pump:

- Close the suction and discharge valves in front of and behind the pump.
- For double shaft seal: Block off the sealing or quenching liquid line.
- Before opening the pump completely empty the pump casing.

Rapid Cooling of Pump

Tension cracks in pump.

► Do not rapidly cool the pump.

Use of Hard Driving Tools

Scratching of polished surfaces.

► For polished surfaces, use a copper socket wrench socket.

10.2 Replacement Parts

Use of replacement parts that are not approved by *Fristam* can lead to serious personal injury and material damage. If you have any questions regarding approved replacement parts, please contact *Fristam*.

Fristam registers all shipped pumps. For ordering replacement parts, you require the following information:

- 1. Serial number of pump: See rating plate or number stamped into pump.
- 2. For replacement parts and materials designations, please see *Order-Related Documents* in the attached documents.

10.3 Inspection of Sealing and Quenching Liquid (Optional)

For pumps equipped for "locking system" or "quenching system," the sealing liquid head must be checked. For information on maintenance intervals, please see *Table 17 on page 28*.

 Check the sealing liquid head and compare with the specified value.

The specified value can be found on the "Sectional Drawing of the Shaft Seal" in the Order-Related Documents. The Order-Related Documents are attached to this operator's manual.

The sealing liquid is heated by hot pumping medium and by operation of the pump.

 Ensure that the temperature T of the sealing liquid is < 70°C during operation.

10.4 Oil Level Check

The oil is checked on the oil sight glass (25), which can be found on the side of the gearbox.

For information on maintenance intervals, please see *Table 17* on page 28.

10.5 Oil Change

For the FK-and FL-Positive Displacement Pumps, the oil must be changed at regular intervals. For information on maintenance intervals, please see *Table 17 on page 28*.

Maintenance Intervals

Under severe operating conditions such as high humidity, aggressive environment, or large temperature fluctuations, the oil should be changed every 2,000 operating hours. Under normal conditions, an oil change should be performed once a year or every 4,000 operating hours.

Lubricants and Amounts

For the required amount of oil, please see *Table 5* Oil change: model FL and *Table 6*, "Oil change: model FK," page 16.

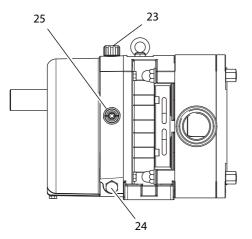


Fig. 17 Oil level and oil change illustrated using the FL 100

23	Bleed screw	
24	Screw plug	
25	Oil sight glass	

Procedure

- 1. Turn on the motor and let it run until the normal operating temperature is reached.
- 2. Turn off the motor and prevent it from being able to be turned on accidentally.
- Place a suitable oil collection container under the screw plug (24).
- 4. Caution! Hot oil. Skin burns from contact with hot oil.
 - ► Wear heat- and oil-resistant gloves.

Loosen the bleed screw (23).

- 5. Loosen and remove the screw plug (24).
- 6. Drain the oil completely and dispose of oil in accordance with local regulations.
- 7. Clean the screw plug, the bleed screw, and the seals.
- 8. Install the screw plug and the bleed screw with the corresponding seals.
- 9. Fill with new oil, monitoring the oil level on the oil sight glass (25) in the process.

Model FL	Expected Oil Volume [l]		Oil
	Horizontal Orien- tation of Pipe Connections Nections		
FL/FL2 55	0.25	0.20	
FL/FL2 75	0.60	0.50	-
FL/FL2 100	1.80	1.30	SAE 15W40
FL 130	2.10	1.70	-
FL2 50	0.15	0.15	-
FL2 58	0.25	0.25	-

Table 5 Oil change: model FL

Model FK	Oil Volume		Oil
	Horizontal Orien- tation of Pipe Connections Horizontal Orien- tion of Pipe Con- nections		
25 and 25/30	1.0	0.7	
40 and 40/45	2.5	1.8	SAE 15W40
48	4.5 4.0		-

Table 6 Oil change: model FK

10.6 Lubrication of Motor Bearings

► Lubricate the motor bearings in accordance with the gear motor manufacturer's specifications. See "Supplier Documentation" in the attached documents.

10.7 Shaft Seal Replacement

Replace the shaft seal if:

- Pumping medium or sealing or quenching liquid flows out of the pump on the atmosphere side.
- Sealing or quenching liquid leaks into the pumping medium.

Procedure

- 1. Remove the pump casing; see *Chapter 10.8, "Pump Head Removal," page 16.*
- 2. Mount the pump casing; see *Chapter 10.9, "Pump Head Attachment," page 18.*
- 2a. Mount the shaft seals on the shafts according to the respective application cases A to F.
- 2b. Mount the rotors.
- 2c. Attach the pump cover.

The exact procedure is described in the following sections.

10.8 Pump Head Removal

Preparation

1. Turn off the motor and prevent it from being able to be turned on accidentally.

- 2. Close the valve in the discharge line.
- 3. Close the valve in the suction line.
- 4. For double shaft seal: Block off the sealing or quenching liquid line.
- 5. Completely empty the pump.
- 6. Loosen the suction and discharge connections.
- 7. Take the pump out of the system.

Procedure

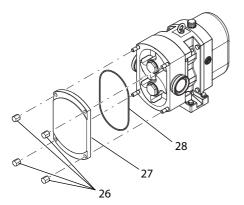


Fig. 18 Detachment of pump cover illustrated using the FL 100

- 1. Loosen the nuts (26) on the pump cover.
- 2. Remove the nuts, the pump cover (27), and the cover seal (28).

Note: If the pump cover is hard to detach:

- FK positive displacement pumps There are two forcing screws with star knobs on the pump cover. Rotate the forcing screws clockwise until the cover detaches.
- FL positive displacement pumps Gently tap on the cover with a plastic hammer to detach the cover.

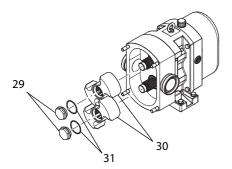


Fig. 19 Removal of rotors illustrated using the FL 100

- 3. Warning: Rotating machine parts. Severe pinching of hands.
 - ▶ Block the rotors (30) with wooden or plastic wedges.

Loosen and remove the rotor fasteners (29) (rotor nuts or rotor screws) and the corresponding seals (31).

- 4. Take the rotors off of the drive and synchronizing shafts.
- 5. Loosen the threaded fasteners that connect the pump casing to the gearbox:

- Model FL: Cap nuts on gearbox
- Model FK: Socket screws inside pump casing

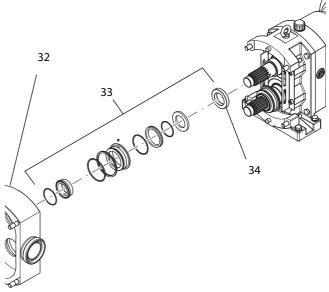


Fig. 20 Removal of shaft seal illustrated using the FL 100

- 6. Remove the pump casing (32).
- 7. Note: Loss of stationary bushing (34). Material damage.
 - Determine the position of the stationary bushing. The stationary bushings are shown on the Sectional Drawing in the Order-Related Documents. The stationary bushings are marked by prick punch marks (indentations).
 - ► Take the shaft seals (33) off of the pump casing (32) and the shafts. Remove the stationary bushings (34).
 - ► Store the stationary bushings separately.
- 8. Continue as follows for the respective shaft seal:

For single shaft seal:

► Disassembly of the pump is now finished.

For double shaft seal:

- 1. The seal covers are located on the shafts and are connected to the gearbox. Please also see the *Sectional Drawing* in the *Order-Related Documents*.
- 2. Loosen the seal covers.
- 3. Remove the seal covers with the sealing elements.

10.9 Pump Head Attachment

The pump assembly is dependent on the respective pump size and model as well as the respective shaft seal. To determine which shaft seal you have, please see the *Order-Related Documents*.

NOTICE

Incorrect Elastomers

Pump leakiness.

 Ensure that the elastomers are appropriate for the condition of the pumping medium. Please refer to the Order-Related Documents.

Preparation

- ► Clean all pump parts. Check for damage and accuracy of fit.
- ▶ If necessary, rework or replace pump parts.
- Assemble carefully in clean conditions. The seals can easily be damaged.
- ► Replace all O-rings.
- ► To reduce friction, wet the O-rings and the sliding faces with water, alcohol, or silicone grease.
- Clean the sealing surfaces of the mechanical seals with a degreaser, e.g., OKS 2610 Universal Cleaner. Do not allow the sealing surfaces to come into contact with oil or grease and do not touch with your fingers afterwards.

Tip: The joint retaining compound "Euro Lock A64.80," e.g., is suitable for gluing in bearings and bushings.

Tip: The screw retaining compound "Euro Lock A24.10," e.g., is suitable for gluing in set screws.

10.9.1 Important Markings

The rotors and stationary bushings must not be mixed up. They have been adapted to the synchronizing shaft or the drive shaft and are marked by prick punch marks (indentations).

- Before installing the stationary bushings and the rotors check the markings:
 - One indentation for drive shaft
 - Two indentations for synchronizing shaft

10.9.2 Mounting of Seals

The shaft seal built into the respective pump is given in the *Order-Related Documents* in the form of a *Sectional Drawing* and a Replacement Parts List.

The part numbers in this chapter are consistent with DIN 24250.

The assembly of standard shaft seals is described in the following sections with the application cases A to F. The version for your order can deviate slightly from this.

If anything is unclear or if you require further information, please contact *Fristam*.

Application Case	Shaft Seal	Model	Pump Sizes
Α	Single	FK and FL	All pump sizes
В	Single	FK 48	48
с	Single	FL 2	All pump sizes
D	Double	FK and FL	All pump sizes
E	Double	FL 2	50–100
F	Double	FL 2	130

Table 7 Standard shaft seals

Note: The following assembly procedures are only shown and described for the drive shaft. All instructions also apply to the synchronizing shaft.

Application Case A

To preassemble on the shaft:

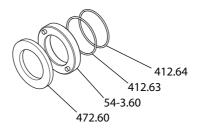
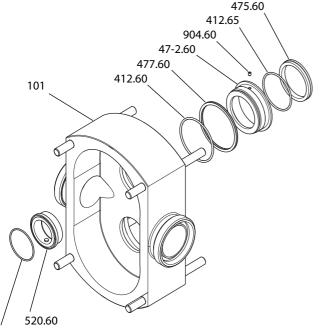


Fig. 21 Preassembly on the shaft, application case A

1. Place O-rings (412.64) and (412.63) on the shaft.

Note: O-ring 412.64 is installed in FL 55 and 75 only.

2. Only for model FL 130:


Insert cylindrical pins into the stationary bushing. Center the cylindrical pins; see the *Sectional Drawing* in the attached documents.

- 3. Note: Mixing up of the two stationary bushings. Material damage during pump operation from rotor blockage or scraping. The stationary bushings are designed for either the drive shaft or the synchronizing shaft. See *Chapter 10.9.1, "Important Markings," page 18.*
 - Slide the marked stationary bushing (54-3.60) onto the appropriate shaft.
- 4. Slide the rotating seal ring (472.60) onto the shaft.
- 5. Only for model FL 130:

Fasten the rotating seal ring and the stationary bushing with cylindrical pins to the shaft. The cylindrical pins are numbered 562.61 on the *Sectional Drawing*.

To preassemble the pump casing:

- Fig. 22 Preassembly in the pump casing and final assembly on the shaft, application case A
- Slide the spring (477.60) onto the mechanical seal chamber (47-2.60) and secure with set screw (904.60).

Note: Incomplete, unstable installation. Material damage during pump operation.

- Ensure that the set screw engages in the pump casing (101) to prevent twisting.
- 7. Place O-rings (**412.65**) and (**412.60**) into the mechanical seal chamber.
- 8. Insert the stationary seal ring **(475.60)** into the mechanical seal chamber.

Note: Rotate the eccentric stationary seal ring slightly until it is lined up correctly for insertion.

- 9. Insert the mechanical seal chamber into the pump casing (101).
- 10. Mount the pump casing on the shafts and slide onto the gearbox.
- 11. **Note:** The pump casing does not lie flat on the gearbox. Material damage from warpage of pump casing.
 - Screw the pump casing to the gearbox using the following fasteners according to the given model:
 - Model FL: Cap nuts on gearbox
 - Model FK: Socket screws inside pump casing
- To complete assembly on the shaft:
- 12. Only for model FL 100/130:

Insert cylindrical pins into the sleeve (**520.60**). Insert the pins completely into the sleeve. See *Sectional Drawing*.

- 13. Insert the O-ring (412.62) into the sleeve.
- 14. Place the sleeve on the shaft.

Only for model FL 100/130: Ensure that the cylindrical pins engage in the slots on the shaft.

15. Finish the assembly of the shaft seal by attaching the rotors; see *Chapter 10.9.3, "Mounting of the Rotors," page 21*.

Application Case B

To preassemble the pump casing:

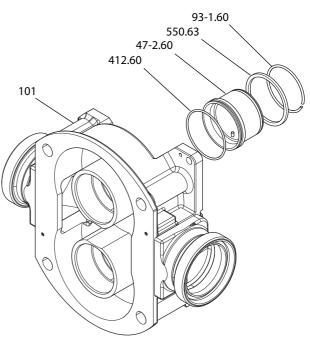
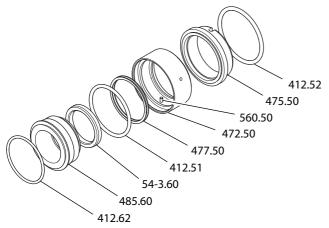



Fig. 23 Preassembly of the pump casing, application case B

- 1. Equip the mechanical seal chamber (47-2.60) with an O-ring (412.60) and guide it into the pump casing (101).
- 2. Place a washer (**550.63**) on the mechanical seal chamber and secure to pump casing with snap ring (**93-1.60**).
- 3. Mount the preassembled pump casing on the shafts and slide onto the gearbox.
- 4. **Note:** The pump casing does not lie flat on the gearbox. Material damage from warpage of pump casing.
 - Screw the pump casing to the gearbox using hex cap screws.

To complete assembly on the shaft:

Fig. 24 Application case *B*, final assembly on the shaft

- 5. Equip the stationary seal ring **(475.50)** with an O-ring **(412.52)**.
- 6. Slide the stationary seal ring onto the shaft so that the slots on the stationary seal ring engage with the cylindrical pins on the pump casing.
- 7. **Note:** Mixing up of the two stationary bushings. Material damage during pump operation from rotor blockage or scraping. The stationary bushings are designed for either the drive shaft or the synchronizing shaft. See *Chapter 10.9.1, "Important Markings," page 18.*
 - Slide the marked stationary bushing (54-3.60) onto the appropriate shaft.
- 8. Equip the seal driver (485.60) with an O-ring (412.62).
- 9. Equip the rotating seal ring (472.50) with the spring (477.50) and the O-ring (412.51).
- 10. Fit the rotating seal ring and the seal driver together.

Note: Ensure that the cylindrical pins (560.50) engage in the slots on the seal driver.

- 11. Slide the rotating seal ring and the seal driver onto the shaft.
- 12. Finish the assembly of the shaft seal by attaching the rotors; see *Chapter 10.9.3, "Mounting of the Rotors," page 21.*

Application Case C

To preassemble the pump casing:

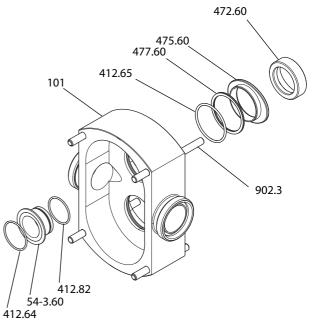


Fig. 25 Application case C

- 1. Equip the pump casing (101) with an O-ring (412.65).
- 2. Equip the stationary seal ring (475.60) with the spring (477.60) and insert into the pump casing.

Note: Rotate the eccentric stationary seal ring slightly until it is lined up correctly for insertion.

- 3. Slide the rotating seal ring (472.60) onto the shaft.
- 4. Mount the pump casing (101) onto the shafts and slide onto the gearbox.
- 5. **Note:** The pump casing does not lie flat on the gearbox. Material damage from warpage of pump casing.
 - Place cap nuts on the studs (902.3) and screw the pump casing to the gearbox.

To complete assembly on the shaft (II):

- 6. Equip the stationary bushing (54-3.60) with an O-ring (412.82).
- 7. **Note:** Mixing up of the two stationary bushings. Material damage during pump operation from rotor blockage or scraping. The stationary bushings are designed for either the drive shaft or the synchronizing shaft. See *Chapter 10.9.1, "Important Markings," page 18.*
 - ► Slide the stationary bushing onto the appropriate shaft.
- 8. Place the O-ring (412.64) into the groove on the rotor.
- 9. Finish the assembly of the shaft seal by attaching the rotors; see *Chapter 10.9.3, "Mounting of the Rotors," page 21.*

Application Case D

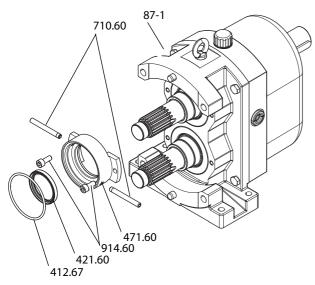


Fig. 26 Standard shaft seal, application case D

- 1. Screw the flushing tubes (710.60) into the seal cover (471.60) and seal.
- 2. Insert the rotary shaft seal (421.60) into the seal cover.

Note: Heed the installation direction for the rotary shaft seal. See *Sectional Drawing*.

- 3. Use socket screws (914.60) to screw the seal cover to the gearbox (87-1).
- 4. Place an O-ring (412.67) on the outside of the seal cover.
- 5. Continue as described in *Chapter*, "Application Case A," page 18.

Application Case E

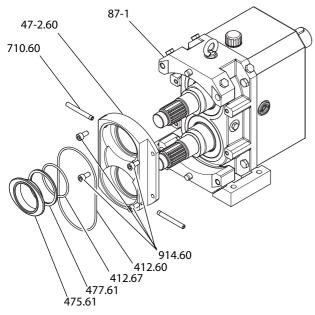


Fig. 27 Standard shaft seal, application case E

1. Screw the flushing tubes (710.60) into the seal cover (47-2.60) and seal.

- 2. Use socket screws (914.60) to screw the seal cover to the gearbox (87-1).
- 3. Insert the stationary seal ring (475.61), the spring (477.61), and the O-ring (412.67) into the seal cover.
- 4. Insert the O-ring (412.60) into the seal cover.
- 5. Continue as described in *Chapter*, "Application Case C," page 20.

Application Case F



Fig. 28 Standard application case F

- 1. Screw the flushing tubes (**710.60**) into the seal cover (**47**-**2.60**) and seal.
- 2. Mount the seal cover on the studs on the gearbox (87-1).
- 3. Insert the stationary seal ring (475.61), the spring (477.61), and the O-ring (412.67) into the seal cover.
- 4. Insert the O-ring (412.60) into the seal cover.
- 5. Continue as described in *Chapter*, "Application Case C," page 20.

10.9.3 Mounting of the Rotors

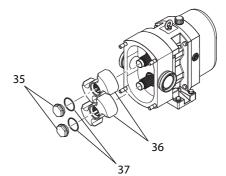


Fig. 29 Installation of rotors illustrated using the FL 100

1. **Note:** Mixing up of the two rotors. Material damage during pump operation from rotor blockage or scraping. The rotors are designed for either the drive shaft or the synchronizing shaft. See *Chapter 10.9.1, "Important Markings," page 18.*

- Mount the rotors (36) with O-rings (37) on the appropriate shafts.
- 2. Depending on the given fastener type, attach the rotor nut or the rotor screw (**35**) as follows:

Rotor Nuts

- 1. Open the polyamide snap ring and place in the shaft groove.
- 2. Screw the rotor nut (35) hand-tight onto the shaft.

Rotor Screws

- 1. Place O-rings on the rotor screw.
- ► For model FK 25-40/45: Fit the rotor screw with round seals and eccentric washers.
- ► For model FL 75-100 with eccentric rotor fixture: Fit the rotor screw with round seals and eccentric washers.
- 2. Screw the rotor screw hand-tight into the shaft.
- ► For model FK 25-40/45: Align the eccentric washer flush with the shaft.
- ► For model FL 75-100 with eccentric rotor fixture: Fit the rotor screw with round seals and eccentric washers.
- 3. Warning: Rotating machine parts. Severe pinching of hands.
 - ► Block the rotors with wooden or plastic wedges.
- 4. Tighten the rotor fasteners to the specified tightening torque. See *Table 8*, "*Tightening torques for rotor fasteners with snap ring*," page 22.

Model	Pump Size	Thread	Rotor Fastener Tightening Torque [Nm]	
			Rotor Nut	Rotor Screw
FL	50	M8	-	11
	55	M16 × 1.5	50	-
	58	M16 × 1.5	50	-
	75	M24 × 1.5	100	-
	75	M12×1,25	-	60
		Eccentric rotor fixture		
	100	M30 × 2	200	-
	100	M16×1,5	-	120
		Eccentric rotor	fixture	
	130	M40 × 2	300	-
	130	M20×1,5	-	170
		Eccentric rotor	fixture	
FK	25 and 25/30	M10	-	30
	40 and 40/45	M12 × 1.25	-	35
	48	M30 × 2	200	-

Table 8 Tightening torques for rotor fasteners with snap ring

10.9.4 Pump Sealing

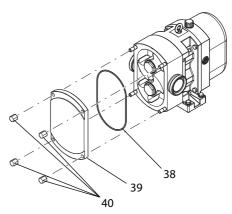


Fig. 30 Fastening of pump cover illustrated using the FL 100

- 1. Equip the pump cover (39) with an O-ring (38).
- 2. Slide the pump cover onto the pump casing and screw on with nuts (40).

For Pumps With Cover Bushings

- 1. Rotate the shafts on the coupling by hand to check if they rotate freely or not.
- 2. Based on the result, take one of the following procedures:

The rotors scrape against the pump cover.

► The pump cover is not properly aligned. Contact *Fristam*. The pump cover must be realigned and repinned.

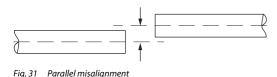
The shafts can be rotated.

► The pump is sealed correctly.

10.10 Shaft Bearing Replacement

► Contact Fristam.

10.11 Coupling Replacement


► Only use couplings that are appropriate for the gear capacity. If you have any questions, please contact *Fristam*.

Procedure

- 1. Turn off the motor and prevent it from being able to be turned on accidentally.
- 2. Remove the coupling guard.
- 3. Remove the coupling tire.
- 4. Detach the motor from the base frame and remove.
- 5. Dispose of the old coupling parts in an environmentally friendly manner.
- 6. Place new coupling parts (tire, flanges, possibly clamping rings) on the drive shaft and on the gear shaft.
- 7. Place the motor on the base frame or the foundation and slightly tighten the fastening screws.

8. Check the parallel and angular misalignment of the shafts.

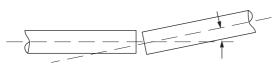


Fig. 32 Angular misalignment

- 9. Minimize deviations from the angular and parallel misalignment. Realign the shafts if necessary.
- 10. Screw the motor to the base frame or the foundation.
- 11. For information on the spacing between the two coupling flanges, please see the coupling installation manual. See *Supplier Documentation* in the attached documents.
- 12. Fasten the coupling flanges with the given spacing onto the shaft.
- 13. Fasten the coupling tire. Tighten the screws uniformly and crosswise. Heed the given tightening torques in the coupling installation manual.
- 14. Mount the coupling guard.

10.12 Gear Motor Replacement

Model FKF: To replace the gear motor, please contact Fristam.

Coupling

The coupling installation manual can be found in the supplier documentation in the attached documents.

NOTICE

Gear Motor Oversized

Use of an incorrectly sized gear motor can result in serious damage to the pump unit.

 Only replace the gear motor with one with the same rating; see Motor Supplier Documentation.

Procedure

- 1. Turn off the gear motor and prevent it from being able to be turned on accidentally.
- 2. Remove the coupling guard.
- 3. Remove the coupling tire.
- 4. Take the coupling parts off of the gear motor.
- 5. Detach the old gear motor from the base frame or the foundation.
- 6. Dispose of the old gear motor. See *Chapter 2.6, "Disposal,"* page 7.

- 7. Remove protective coatings and grease from all coupling parts.
- 8. Place coupling parts (tire, flanges, possibly clamping rings) on the drive shaft and on the replacement motor shaft.
- 9. Place the replacement motor on the base frame or the foundation and fasten.
- 10. Continue with step 8, "Check the parallel and angular misalignment of the shafts," in Chapter 10.11, "Coupling Replacement," page 22.

10.13 Checking of the Clearances

The clearance ensures the trouble-free movability of the rotor. The axial clearance has to be checked if one of the following parts has to be replaced:

Model FL

- shaft
- casing
- gearbox

Model FK

- shaft
- casing
- gearbox
- rotor

Model FK

If the casing or the gearbox is replaced, the radial clearance must be readjusted. For this purpose the pump has to be send to the Fristam customer service, or contact *Fristam* to receive a pin fitting instruction.

10.13.1 Preparation of Pump for Measurement

Prerequisites

- Pump cover has been removed.
- Rotors have been removed.

Procedure

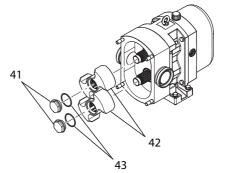


Fig. 33 Installation of rotors illustrated using the FL 100

- 1. **Note:** Mixing up of the two rotors. Material damage during pump operation from rotor blockage or scraping. The rotors are designed for either the drive shaft or the synchronizing shaft. See *Chapter 10.9.1*, "*Important Markings*," *page 18*.
 - Mount the rotors (42) with O-rings (43) on the appropriate shafts.
- 2. Depending on the given fastener type, attach the rotor nut or the rotor screw as follows:

Rotor Nuts

Note: The polyamide snap ring is not attached for the clearance measurement.

Screw the rotor nut (41) hand-tight onto the shaft.

Rotor Screws

- 1. Place O-rings and washer on the rotor screw.
- ► For model FK 25-40/45: Fit the rotor screw with round seals and eccentric washers.
- ► For model FL 75-100 with eccentric rotor fixture: Fit the rotor screw with round seals and eccentric washers.
- 2. Screw the rotor screw hand-tight into the shaft.
- ► For model FK 25-40/45: Align the eccentric washer flush with the shaft.
- ► For model FL 75-100 with eccentric rotor fixture: Fit the rotor screw with round seals and eccentric washers.
- 3. Warning: Rotating machine parts. Severe pinching of hands.
 - ▶ Block the rotors (42) with wooden or plastic wedges.
- 4. Tighten the rotor fasteners to the specified tightening torque. See *Table 9*, *"Tightening torques for rotor fasteners without snap ring," page 24.*

Model	Pump Size	Thread	Tightening Torque [Nm]
FL	50	M8	11
	55	M16 × 1.5	25
	58	M16 × 1.5	25
	75	M24 × 1.5	50
	75	M12×1,25	60
		Eccentric rotor	fixture
	100	M30 × 2	100
	100	M16×1,5	120
		Eccentric rotor	fixture
	130	M40 × 2	100
	130	M20×1,5	170
		Eccentric rotor	fixture
FK	25 and 25/30	M10	30
	40 and 40/45	M12 × 1.25	35
	48	M30 × 2	100

Table 9 Tightening torques for rotor fasteners without snap ring

10.13.2 Measurement of Axial Clearance

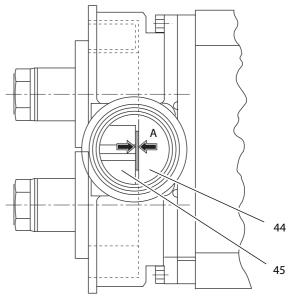


Fig. 34 Measurement of axial clearance

Prerequisites

Pump has been prepared for the measurement.

Procedure

- 1. Measure the clearance **A** between the pump casing **(44)** and the rotor **(45)** using vernier calipers.
- 2. Note: Clearance too small. Destruction of pump.
 - Check your order documents to determine if standard or high-temperature rotors are installed in the pump. If necessary, contact *Fristam*.
- 3. Compare the clearance with the value in *Table 10 Axial clearances*.

Note: When rotors are used they undergo wear. This increases tolerance ranges slightly.

Model	Pump Size	Axial Clearance in mm		
		Standard Rotors	High-Temperature Rotors	
FL	50	0.04 - 0.06	0.06 - 0.08	
	55 S/L	0.13 – 0.15	0.18 – 0.20	
	58 S/L	0.10 – 0.13	0.15 – 0.18	
	75 S/L	0.17 – 0.19	0.22 – 0.24	
	75 L3	0.17 – 0.19	0.22 – 0.24	
	100 S/L	0.21 – 0.23	0.29 – 0.31	
	100 L3	0.20 – 0.22	0.29 – 0.31	
	130 S	0.21 – 0.23	0.29 – 0.31	
	130 L	0.25 – 0.27	0.33 – 0.35	
	130 XL	0.27 – 0.29	_	

Table 10 Axial clearances

Model	Pump Size	Axial Clearance in mm		
		Standard Rotors	High-Temperature Rotors	
FK	25 and 25/30	0.03–0.04	0.11–0.13	
	40	0.06-0.08	0.11–0.13	
	40/45	0.08-0.10	0.13–0.15	
	48	0.15-0.17	0.25–0.27	

Table 10 Axial clearances

4. If the clearance is not within the specified tolerance range:

Clearance too large

▶ See Chapter, "Grinding of Stationary Bushing," page 25.

Clearance too small

- ▶ See Chapter, "Addition of Shims," page 25.
- 5. If the clearance is within the specified tolerance range, go to *Chapter 10.13.3, "Measuring radial clearance," page 25.*

Grinding of Stationary Bushing

- 1. Remove the pump casing; see *Chapter 10.8, "Pump Head Removal," page 16.*
- 2. Take the stationary bushing out of the shaft seal set. The positions of the stationary bushings are shown on the Sectional Drawing in the Order-Related Documents in the attached documents. The stationary bushings are marked by prick punch marks (indentations); see Chapter 10.9.1, "Important Markings," page 18.
- 3. Grind the stationary bushing down to the required dimension.
- 4. Mount the pump casing.

See Chapter 10.9, "Pump Head Attachment," page 18.

5. Measure the clearance again.

Addition of Shims

- 1. Warning: Rotating machine parts. Severe pinching of hands.
 - Block the rotors with wooden or plastic wedges.
- 2. Remove the rotor nuts and rotors.
- 3. Temporarily place the required shims on the shafts in these positions.
- 4. Install the rotors and the rotor nuts as described in *Chapter 10.13.1, "Preparation of Pump for Measurement," page 23.*
- 5. Measure the clearance again.

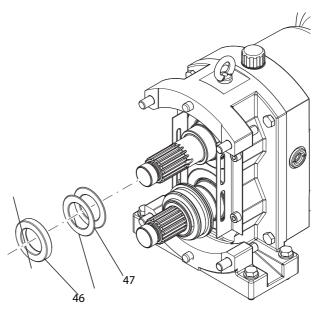


Fig. 35 Addition of shims

6. Clearance correct: Remove the pump casing to place the shims in the correct positions.

See Chapter 10.8, "Pump Head Removal," page 16.

- 7. Place the shims (47) and the stationary bushing (46) on the shaft.
- 8. Continue as in Chapter 10.9, "Pump Head Attachment," page 18 to Chapter 10.9.3, "Mounting of the Rotors," page 21.
- 9. Continue as follows for the respective model:

Model FL

 Seal the pump; see Chapter 10.9.4, "Pump Sealing," page 22. The clearance measurement is finished.

Model FK

► Continue with 10.13.3 Measuring radial clearance.

10.13.3 Measuring radial clearance

 Check your order documents to see whether the pump is equipped with a standard or high-temperature rotor. If necessary, contact Fristam.

Precondition

Pump is prepared for measurement

Procedure

- 1. Measure the clearance between the rotor and the pump casing with a feeler gauge, see *Fig. 36-37 Measuring radial clearance, Page 26.*
- 2. Compare the measured values with those in the table, see table 9-10 Radial clearance, Page 26.

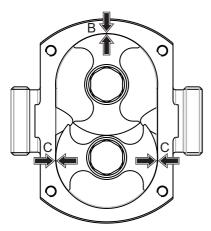


Fig. 36 Model FL: Measuring radial clearance

Model FL	Radial clearance [mm]				
	Standa	rd rotor	High-tempe	rature rotor	
	В	С	В	С	
50	0.06-0.12	0.09-0.12	0.09-0.15	0.12-0.15	
55 S	0.10-0.16	0.20-0.23	0.15-0.21	0.26-0.29	
55 L	0.12-0.18	0.23-0.26	0.17-0.22	0.27-0.30	
58 S/L	0.10-0.16	0.17-0.20	0.14-0.20	0.22-0.24	
75 S	0.14-0.20	0.27-0.30	0.17-0.24	0.30-0.33	
75 L	0.20-0.26	0.33-0.36	0.22-0.29	0.35-0.38	
75 L3	0.22-0.30	0.35-0.39	0.22-0.30	0.35039	
100 S	0.23-0.30	0.40-0.45	0.26-0.33	0.43-0.48	
100 L	0.31-0.39	0.48-0.53	0.34-0.42	0.52-0.56	
100 L3	0.33-0.41	0.50-0.56	0.33-0.41	0.50-0.56	
130 S	0.27-0.35	0.47-0.53	0.30-0.38	0.50-0.55	
130 L	0.36-0.44	0.56-0.61	0.38-0.46	0.58-0.64	
130 XL	0.47-0.55	0.67-0.73	-	-	

Table 11 Radial clearance in model FL

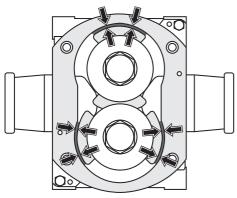


Fig. 37 Model FK: Measuring radial clearance

Model FK	Radial clearance [mm]			
	Standard rotor	High-temperature rotor		
25 and 25/30	0.02-0.05	0.07-0.10		
40	0.04-0.07	0.11-0.14		

Table 12 Radial clearance in model FK

Model FK	Radial clearance [mm]			
	Standard rotor	High-temperature rotor		
40/45	0.03-0.07	0.10-0.13		
48	0.08-0.12	0.13-0.17		

Table 12 Radial clearance in model FK

- 3. Check if the drive shaft can be rotated by hand at the rotor fastener or not.
- 4. Based on the result, take one of the following procedures:

The drive shaft cannot be rotated.

If the drive shaft cannot be rotated, the clearances are too small.

► Contact *Fristam* to order the documents for repinning of the pump casing.

The drive shaft can be rotated.

If the drive shaft can be rotated and the clearances are the same at all measuring points, seal the pump as follows:

- 1. First remove the rotor nuts again.
- 2. Proceed as described in the following chapters:

Chapter 10.9.3, "Mounting of the Rotors," page 21 and Chapter 10.9.4, "Pump Sealing," page 22.

3. The clearance measurement is finished.

11 Appendix 1

11.1 Specifications

11.1.1 Tightening Torques

Tightening Torques for Screws and Nuts

Material: Steel, Strength Class: 8.8

Thread	M8	M10	M12	M16
Tightening Torque [Nm]	25	49	85	210

Material: Stainless steel, Strength Class: 70

Thread	M8	M10	M12	M16
Tightening Torque [Nm]	17.5	35	62	144

11.1.2 Maximum Discharge Pressures

Model FL

Pump Size	Maximum Discharge Pressure
	[bar]
FL50	9
FL55S	9
FL55L	6
FL58S	9
FL58L	8
FL75S	12
FL75L	8
FL100S	12
FL100L	8
FL130S	12
FL 130L	8

Table 13 Maximum discharge pressures for model FL

Models FK and FKH

Pump Size/Version	Maximum Discharge Pressure
	[bar]
All pump sizes Without cover bushing	5
FKFH/FKFNH 25	15
FKFHV/FKFNHV 25	12
FKFH/FKFNH 25/30	12
FKFHV/FKFNHV 25/30	12
FKFH/FKFNH 40	18
FKFHV/FKFNHV 40	12
FKFH/FKFNH 40/45	12
FKFHV/FKFNHV 40/45	12
FKNH/FKNHV 48	20

Table 14 Maximum discharge pressures for models FK and FKH

11.1.3 Maximum Medium Temperatures

Model FL

Rotor Type	Maximum Temperature [°C]
Standard rotors	90
High-temperature rotors	160

Table 15 Maximum pumping temperature model FL

Model FK

Rotor Type	Maximum Temperature
	[°C]
Standard rotors	90
High-temperature rotors	150

Table 16 Maximum pumping temperature model FK

11.2 Maintenance Intervals

Interval	Model	Maintenance Task	Chapter
Once a day	All	Check the oil level.	See Chapter 10.4, "Oil Level Check," page 15.
Once a day	"Sealing and Quenching Liquid" option	Check the sealing or quenching liquid.	See Chapter 10.3, "Inspection of Sealing and Quenching Liquid (Optional)," page 15.
2,000 h	All, under severe operating condi- tions	Change the oil.	See Chapter 10.5, "Oil Change," page 15.
4,000 h	All	Check the displacer nut/screw for tightness and retighten if necessary	See Chapter 10.13, "Checking of the Clearances," page 23.
4,000 h	All, under normal operating condi- tions	Change the oil.	See Chapter 10.5, "Oil Change," page 15.
When necessary	All	Replace the shaft seal.	See Chapter 10.7, "Shaft Seal Replacement," page 16.
When necessary	All	Replace the coupling.	See Chapter 10.11, "Coupling Replacement," page 22.
When necessary	All	Replace the motor.	See Chapter 10.12, "Gear Motor Replacement," page 23.
According to manufacturer's specifications	All	Lubricate the motor bearings; for more information on motor maintenance intervals, please see the <i>Motor Supplier Docu-</i> <i>mentation</i> .	See Chapter 10.6, "Lubrication of Motor Bearings," page 16.

Table 17 Maintenance intervals

11.3 Troubleshooting Table

Problem	Possible Cause	Remedy
Pump either does not pump or pumps irregu- larly.	Pump interior not completely filled with liquid; pump interior not vented; discharge valve closed.	Fill pump interior with liquid; open discharge valve.
	Suction line blocked or clogged.	Open or clean suction line.
	Pump with geodesic suction head ¹ : liquid falls at standstill and casing runs dry.	Install foot valve in suction line.
	Suction line leaky; seal on pump cover leaky and drawing in air.	Seal suction line; replace cover seal.
	Air pocket in suction line.	Lay suction line as straight as possible and at steady incline.
	Pump blocked; foreign objects in pump.	Clean pump interior; perform visual inspection; contact <i>Fristam</i> .
	Foot valve blocked or contaminated.	Clean foot valve; reestablish proper function.
	Viscosity of pumping medium too high; medium does not flow well because too viscous.	Contact Fristam.
	Coupling punctured due to overloading.	Contact Fristam.
Flow rate too high.	Pump oversized.	Contact Fristam.
	No regulating valve behind discharge port.	Install regulating valve; add throttle control; reduce motor speed.
Flow rate too low; discharge head too low.	Selected pump too small; motor speed too low due to incorrect voltage.	Contact <i>Fristam</i> ; connect according to motor rating plate.
	Suction line leaky and drawing in air.	Seal leaks.
	Viscosity of pumping medium too high (too viscous).	Possibly convert to heating; contact Fristam.
	Rotor wear; clearance too large.	Repair.
	Back pressure too high; relief valve (if supplied) regulates incorrectly.	Set relief valve correctly.
	Direction of rotation incorrect.	Correct pipe and electrical connections.

Table 18 Troubleshooting table

Problem	Possible Cause	Remedy
Metal noise.	Foreign objects in pump interior.	Disassemble, inspect, and (if necessary) repair.
	Rotors mechanically catching; rotor nuts loose.	Disassemble, rework, and set correct clearance.
	Excessive wear of bearings and gearwheels from overloading or inadequate lubrication.	Disassemble, inspect, and repair. Regular maintenance; lubricant service.
	Speed too high.	Use motor with frequency converter; contact <i>Fristam</i> .
	Pump running dry; shaft seal running dry.	Immediately supply pumping medium; immedi- ately supply sealing water.
	No high-temperature rotors (with larger clear- ance) installed for pumping medium at elevated temperatures.	Check operating conditions; Contact <i>Fristam</i> .
	Excessive throttling of discharge line.	Check operating conditions; contact <i>Fristam</i> .
Flow noise.	Operation in overload or part-load range.	Adjust working point to design.
	Flow losses in suction line too high.	Increase nominal sizes; rule out the possibility of throttling.
	Cavitation.	Check condition for NPSH rating; see <i>Chapter 6.5,</i> <i>"Installation of Pipes," page 12.</i> Contact <i>Fristam</i> .
Vibrations.	Weight and hydraulic forces of pipes stressing the pump.	Support pipes so that pump is not stressed; install vibration dampers if necessary; keep water hammers away from pump.
Excessive heating of pump shaft bearings and drive gear.	Bearing damage.	Disassemble; replace bearings.
	Lubricating oil inadequate.	Change lubricating oil (see <i>Table 5 on page 16</i>); perform maintenance at regular intervals (see <i>Table 17 on page 28</i>).
Motor power consumption too high.	Resistance in discharge line too high; pump throttled too much; flow rate too low.	Increase nominal size of discharge line; open throttle valve; reduce speed using frequency con- verter on motor or control gear.
	Viscosity and/or density of pumping medium too high.	Contact Fristam.
	Rotors installed with inadequate clearance con- trary to specifications.	Contact Fristam.
	Massive damage to pump shaft bearings or gear motor.	Disassemble and inspect; contact <i>Fristam</i> .
Leakage at shaft seal.	Shaft seal mechanical damage or wear.	Replace mechanical seal and rotary shaft seal (including all secondary seals); possibly convert to different materials; contact <i>Fristam</i> .
	Shaft seal running dry; suction head too high; pumping medium temperature too high.	Decrease geodesic suction head; use double shaft seal; contact <i>Fristam</i> .
	Sealing or flushing water pressure too high.	Adjust using throttle valve and pressure gauge.
	Shaft seal materials not chemically resistant to pumping medium; medium temperature too high.	Contact <i>Fristam</i> ; convert to cooling or double shaft seal.
	Sealing or flushing water pressure too low; sealing water tubes clogged; shaft seal crusted or damaged.	Adjust sealing water inlet and outlet; clean sealing water tubes; replace shaft seal.
	Sealing water contaminated or too hot.	Use drinking water-quality water with tempera- ture of max. 70°C.

Table 18 Troubleshooting table

¹The "geodesic suction head" is the vertical distance between the suction-side liquid level and the center of the pump pipe connections.

11.4 Number Key

The number key is for the attached *Sectional Drawing*. When ordering replacement parts, please specify the *Part Number* and the *Name*. The part numbers are consistent with DIN 24250.

ine part i	iumbers are consistent with Div 2
Part Number	Name
101	Pump casing
108	Stage casing
160	Cover
13-1	Back casing panel
13-2	Housing insert
130	Casing part
132	Spacer
135	Wearing bush
154	Intermediate wall
156	Outlet side
18-1	Spherical cap bearing
18-2	Vibration damper
182	Base
21-1	Synchronizing shaft
213	Drive shaft
23-1	Rotor
26-1	Bracket for mechanical seal cham-
	ber
230	Impeller
32-1	Angular contact ball bearing
32-2	Cylindrical roller bearing
32-3	Deep groove ball bearing
32-4	Tapered roller bearing
321	Radial ball bearing
322	Radial roller bearing
325	Needle bearing
330	Bearing support
331	Bearing block
341	Drive lantern
344	Bearing support lantern
350	Bearing housing
360	Bearing cap
40-4	Half-length taper grooved pin
400	Flat seal
410	Profile seal
411	Gasket
412	O-ring
421	Rotary shaft seal
422	Felt ring
423	Labyrinth ring
433	Mechanical seal
45-1	Thrust ring
451	Stuffing box housing
454	Stuffing box ring
47-1	Spring with washer
47-2	Mechanical seal chamber
47-3	Wedge seal
47-5	Ring nut
471	Seal cover
472	Rotating seal ring
474	Thrust collar
475	Stationary seal ring

Part Number	Name
476	Stationary seal ring support
477	Mechanical seal spring
478	Right spring
479	Left spring
481	Bellows
482	Bellows support
484	Spring retainer
485	Seal driver
500	Ring
50-1	Split lock washer
50-2	V-ring
50-3.60	Set collar
504	Spacer ring
520	Sleeve
523	Shaft sleeve
524	Shaft protective sleeve
525	Spacer sleeve
54-1	Cover bushing
54-2	Bushing
54-3	Stationary bushing
540	Bushing
543	Spacer bushing
55-1	Serrated lock washer
550	Washer
551	Spacer washer
554	Washer
561	Grooved pin
56-1	Roll pin
56-2	Grooved pin with round head
560	Pin
562	Cylindrical pin
59-2	Dished-type lock washer
59-3	Shrink ring
59-4	Lantern
59-5	Membrane
642	Oil level sight glass
680	Enclosure
68-1	Support plate
68-2	Foam strip
68-3	Bracket for enclosure
68-4	Orifice plate
68-5	CF guard plate
681	Coupling guard
701	Bypass line
710	Pipe
71-1	Connection pipe
715	Hose pipe
722	Flange adapter
723	Flange
724	Blind flange
733	Pipe clamp
751	Valve housing

Part	Name
Number	
755	Valve bolt
756	Valve spring
759	Valve plate
800	Motor
801	Flange motor
87-1	Gearbox
87-2	Gear cover
87-3	Gear cap
87-4	Gear base
839	Contact
872	Gearwheel
89-1	Filler piece
89-2	Spherical cap frame
89-3	Motor foot
89-4	Handle
89-5	Protective cap
89-6	Wheel
89-8	Flat bar steel
89-9	Motor bracket
89-10	Motor bracket
89-11	Spherical cap base support
892	Base plate
894	Console
897	Guide piece
90-1	Stud bolt
90-3	Tapered pin
90-4	Half-length taper grooved pin
90-5	Eyebolt
900	Screw
901	Hex cap screw
902	Threaded stud
903	Screw plug
904	Set screw
906	Impeller bolt
909	Adjusting screw
91-1	Slotted cheese head screw
913	Bleed screw
914	Socket screw
92-1	Star knob nut, long
92-2	Star knob nut, short
92-3	Cap nut
92-4	Rotor nut
92-5	Forcing screw Rotor fastener
92-6	Nut with flange
92-7	5
920	Hex nut Shaft nut
921	
922	Impeller nut
923	Bearing nut
93-1	Snap ring Datainar
930	Retainer
931	Retaining washer

ng
uff key

11.5 EC Declaration of Conformity

The manufacturer: FRISTAM Pumpen KG (GmbH&Co.) Kurt-A.-Körber-Chaussee 55 21033 Hamburg, Germany

declares that the following product (pump with motor):

- centrifugal pump types FP, FPE, FP...V, FPH, FPEH,
 FPH...V, FSPE, FSP...V, FM, FZ, FC, CF, CFE, FPM, and FSM
- Positive displacement pump types: FK, FKL, FL, FL2, and FL3
- Powder mixer type: PM
- (for serial number, see cover page of operating manual)

conforms to all relevant requirements of the EU Machinery Directive (2006/42/EC).

The machine also conforms to the relevant requirements laid down in the Low Voltage Directive (2014/35/EU) and the EMC Directive (2014/30/EU) No. 1935/2004 and FDA.

The above product conforms to the following standards:

- DIN EN 809:2012-10: Pumps and pump units for liquids Common safety requirements
- DIN EN ISO 12100:2011-03: "Safety of machinery General principles for design, risk assessment and risk reduction")

Documentation officer: Julia Friedsch Telephone: +49(0)40 72556-107 Address: see manufacturer address

Hamburg, 30 October 2020

J Friedsch

Julia Friedsch / Head of Quality Management

11.6 EG Declaration of Incorporation

The manufacturer: FRISTAM Pumpen KG (GmbH&Co.) Kurt-A.-Körber-Chaussee 55 21033 Hamburg, Germany

declares that the following product (pump without motor):

- centrifugal pump types FP, FPE, FP...V, FPH, FPEH, FPH...V, FSPE, FSP...V, FM, FZ, FC, CF, and CFE
- Positive displacement pump types: FK, FKL, FL, FL2, and FL3
- Powder mixer type: PM
- (for serial number, see cover page of operating manual)

is an incomplete machine in accordance with the **Machinery Directive (2006/42/EC) Annex II B**.

The relevant, basic safety and health requirements of Annex I of the above-mentioned Directive have been applied and adhered to.

The incomplete machine further meets all the provisions of the Directive (EC) No. 1935/2004 and FDA.

The incomplete machine may only be put into operation when it has been determined that the machine into which the incomplete machine is to be installed complies with the Machinery Directive (2006/42/EC).

The above product conforms to the following standards:

- DIN EN 809:2012-10: Pumps and pump units for liquids Common safety requirements
- DIN EN ISO 12100:2011-03: "Safety of machinery General principles for design, risk assessment and risk reduction"

The manufacturer undertakes to transmit the special documentation on the partly completed machinery electronically to the national authorities when requested to do so.

The technical documentation belonging to the machine as per Annex VII Part B have been prepared.

Documentation officer: Julia Friedsch Telephone: +49(0)40 72556-107 Address: see manufacturer address

Hamburg, 30 October 2020

J Friedsch

Julia Friedsch / Head of Quality Management

12 Appendix 2 – Assembly Instructions (Optional)

12.1 Safety Instructions

These assembly instructions are addressed solely to specialized employees.

12.2 Scope

These assembly instructions apply to pumps supplied without motors (optional) and preassembled.

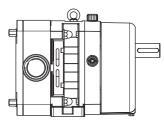


Fig. 38 Incomplete machine: pump without motor, coupling, or base frame illustrated using the FL 100

The following specifications in the "Original Operator's Manual" for complete machines do not apply in this case:

- Chapter 11.5, "EC Declaration of Conformity," page 32,
- Chapter 11.1.2, "Maximum Discharge Pressures," page 27.

12.3 Rating Plate

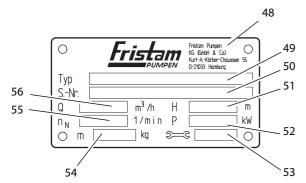


Fig. 39 Rating plate for pump without drive

48	Manufacturer
49	Type: pump series, pump size, model, version
50	SN: serial number of the pump
51	H: discharge head [m]; without drive: no indication
52	P: motor output [kW]; without drive: no indication
53	Year of manufacture
54	m: mass (pump without drive) [kg]
55	n _R : rated speed [1/min]; without drive: no indication
56	Q: flow rate [m ³ /h]; without drive: no indication

12.4 Moving Without Motor

Transportation may only be performed by trained personnel. The pump can be moved using an industrial truck or a crane. Always move the pump in the installation condition.

12.4.1 Safety Instructions

Falling or Unsecured Parts

Severe crush injuries.

 Always wear gloves when performing transportation-related work.

Incorrect Positioning of Pump for Transportation

Leakage of caustic, toxic, or contaminating liquids. Personal injury and material damage from contamination.

► Always move the pump in the installation condition.

Open, Unsealed Pipe Fittings

Material damage from contamination, impact, or moisture in the pump.

 Remove the pipe fitting covers just prior to connection to the pipes.

12.4.2 Moving With Industrial Trucks

A WARNING

Unsecured Parts

Serious injuries, pinching of extremities, material damage.

 Before moving the pump secure it to prevent it from tipping over. Secure the pump to the pallet with tie-down straps, or screw the pump to the pallet.

Preparation

Ensure that the pump is adequately secured to the pallet, for example, with straps; see Fig. 40, "Moving with pallet truck," page 33.

Procedure

- 1. Pick up the pallet with the forks on the industrial truck.
- 2. Carefully move the pallet to the designated location and set down.

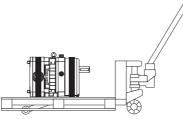


Fig. 40 Moving with pallet truck

Moving With Crane

A WARNING

Falling Parts

Death from crushing, pinching of extremities, material damage.

 Only use suitable means of conveyance and hoists that are designed for the total weight of the pump.

Information on the pump weight can be found on the pump's rating plate as well as in the *Order-Related Documents* in the attached documents.

- Do not leave the pump in a raised position for longer than necessary.
- Ensure that the area below the pump is clear of people.

A WARNING

Swinging Parts

Crushing and serious injuries.

- Start and stop the crane with pump smoothly.
- Ensure that the danger zone of the pump is clear of people.

Auxiliary Equipment

- Hoists: round slings tested in accordance with DIN EN 1492-1 and 1492-2
- Eyebolt and suitable eyebolt lifting devices

Preparation

► Remove load-securing devices.

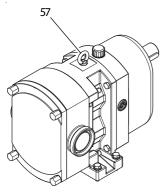


Fig. 41 Moving with crane and eyebolt illustrated using the FL100

To move the pump with the eyebolt:

- 1. Screw the eyebolt completely into the threaded hole **(57)** intended for it.
- 2. Fasten the crane hook to the eyebolt; use a shackle if necessary.
- 3. Lift the pump.

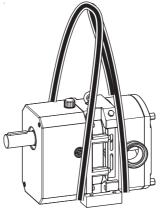


Fig. 42 Moving with crane and round sling illustrated using the FL100

To move the pump with the round sling:

1. Wrap the round sling around the casing and the gear cover.

See Fig. 42, "Moving with crane and round sling illustrated using the FL100," page 34.

2. For double shaft seal:

Note: Round sling compresses sealing water tubes. Material damage to double shaft seal.

- ► Do not lay the round sling on the sealing water tubes.
- 3. Cross one sling loop over the other and hook over the hook to ensure that the belt will not slip on the hook.
- 4. Position the center of gravity to ensure that the pump is lifted horizontally.
- 5. Lift the pump.

12.5 Installation Location

Please see the operator's manual *Chapter 6.2, "Installation Location," page 11* for the basic installation location requirements.

12.6 Pump Installation

12.6.1 Models FL, FKFN, FKN

Prerequisites (Customer-Side)

- Suitable gear motor
- Adequately sized coupling
- Common installation surface for gear motor and pump so that pump shaft can be aligned with gear motor shaft

NOTICE

Incorrectly Designed Motor and Coupling

Destruction of pump and coupling.

➤ Only use motors and couplings that have been adapted to the pump characteristic curves. If you have any questions, please contact *Fristam*.

Note: Please see the coupling supplier documentation for reference dimensions for the coupling.

Procedure

- 1. Mount the coupling parts on the drive shaft and the gear shaft.
- 2. Place the pump on the base frame or the foundation so that the drive shaft can be connected to the gear shaft with the coupling.
- 3. Screw the threaded fastener slightly into the pump base.
- 4. Check the parallel and angular misalignment of the drive and gear shafts.
- 5. Minimize deviations from the angular and shaft misalignment. If necessary, realign or add shims.
- 6. Screw the pump and gear to the base frame or the foundation.
- 7. Fasten the coupling according to the coupling manufacturer's specifications.
- 8. Install a noncontact, barrier-providing protective device (coupling guard) in accordance with Section 1.4, entitled "Required Characteristics of Guards and Protective Devices," of the Machinery Directive 2006/42/EC.
- 9. The pump is now installed. Do not commission the pump unless the requirements of the EC Machinery Directive are met for the complete machine.

Note: Continue with Chapter 4, "Transportation," page 9.

12.6.2 Model FKF

Requirement (customer-side)

- suitable geared motor

NOTICE

Incorrect layout of motor

Destruction of pump

- Only use motors that match the pump characteristics. Contact Fristam if you have questions.

Procedure

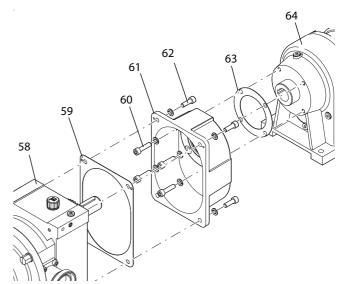


Fig. 43 Mounting the geared motor for model FKF

- 1. Loosen the mounting screws (60) of the gearbox cover (61).
- 2. Remove the gearbox cover from the gearbox (58).
- 3. Put the flat seal (61) on the geared motor (64) with the hollow shaft.
- 4. Put the gearbox cover on the flat seal and align the holes to each other.

Note: Radial shaft seal must be set into the gearbox cover.

- 5. Screw gearbox cover from inside to the geared motor with mounting screws (60).
- 6. Put flat seal (59) on the gearbox cover.
- 7. Put gearbox together with the gearbox cover.
- 8. Screw with the mounting screws (62).

Note: Continue with Chapter 4, "Transportation," page 9.

Fristam Pumpen KG (GmbH & Co.) Kurt-A.-Körber-Chaussee 55 21033 Hamburg GERMANY

Tel.: +49-40-72556-0 Fax: +49-40-72556-166 E-mail: info@fristam.de